

© James Cook Institute Pte Ltd Effective date: July 2023 Page 1 of 3

ICDL Computing

COURSE OUTLINE

COURSE DURATION

16 hours

COURSE SYNOPSIS

This course sets out essential concepts and skills relating to the ability to use computational thinking

and coding to create simple computer programs.

COURSE OBJECTIVES

After the course, you will be able to:

• Understand key concepts relating to computing and the typical activities involved in creating

a program.

• Understand and use computational thinking techniques like problem decomposition, pattern

recognition, abstraction and algorithms to analyse a problem and develop solutions.

• Write, test and modify algorithms for a program using flowcharts and pseudocode.

• Understand key principles and terms associated with coding and the importance of well-

structured and documented code.

• Understand and use programming constructs like variables, data types, and logic in a

program.

• Improve efficiency and functionality by using iteration, conditional statements, procedures

and functions, as well as events and commands in a program.

• Test and debug a program and ensure it meets requirements before release.

TRAINING DELIVERY METHODOLOGY

Classroom training with hands on (using the computer) is one of the best ways to attain a grasp of a

new programming language

TARGET AUDIENCE

Data scientists, finance/accounting professionals, consultants, project managers, agile / scrum

professionals, web developers, administrators and other professions who require some basic

knowledge of python.

ASSUMED SKILLS

• Learners must be able to read, write, speak and listen to English at secondary school level

• Learners must be able to operate computers at intermediate level

COURSE OUTLINE

1 Computing Terms

1.1 Key Concepts

▪ Define the term computing.

▪ Define the term computational thinking.

▪ Define the term program.

▪ Define the term code. Distinguish between
source code, machine code.

▪ Understand the terms program description

© James Cook Institute Pte Ltd Effective date: July 2023 Page 2 of 3

ICDL Computing

COURSE OUTLINE

and specification.

▪ Recognise typical activities in the creation of
a program: analysis, design, programming,
testing, enhancement.

▪ Understand the difference between a formal
language and a natural language.

2 Computational Thinking Methods

2.1 Problem Analysis

▪ Outline the typical methods used in
computational thinking: decomposition,
pattern recognition, abstraction, algorithms.

▪ Use problem decomposition to break down
data, processes, or a complex problem into
smaller parts.

▪ Identify patterns among small, decomposed
problems.

▪ Use abstraction to filter out unnecessary
details when analysing a problem.

▪ Understand how algorithms are used in
computational thinking.

2.2 Algorithms

▪ Define the programming construct term
sequence. Outline the purpose of sequencing
when designing algorithms.

▪ Recognise possible methods for problem
representation like: flowcharts, pseudocode.

▪ Recognise flowchart symbols like: start/stop,
process, decision, input/output, connector,
arrow.

▪ Outline the sequence of operations
represented by a flowchart, pseudocode.

▪ Write an accurate algorithm based on a
description using a technique like: flowchart,
pseudocode.

▪ Fix errors in an algorithm like: missing
program element, incorrect sequence,
incorrect decision outcome.

3 Starting to Code

3.1 Getting Started

▪ Describe the characteristics of well-

structured and documented code like:
indentation, appropriate comments,
descriptive naming.

▪ Use simple arithmetic operators to perform
calculations in a program: +, -, /, *.

▪ Understand the precedence of operators and
the order of evaluation in complex
expressions. Understand how to use
parenthesis to structure complex
expressions.

▪ Understand the term parameter. Outline the
purpose of parameters in a program.

▪ Define the programming construct term
comment. Outline the purpose of a
comment in a program.

▪ Use comments in a program.

3.2 Variables and Data Types

▪ Define the programming construct term
variable. Outline the purpose of a variable in
a program.

▪ Define and initialise a variable.

▪ Assign a value to a variable.

▪ Use appropriately named variables in a
program for calculations, storing values.

▪ Use data types in a program: string,
character, integer, float, Boolean.

▪ Use an aggregate data type in a program
like: array, list, tuple.

▪ Use data input from a user in a program.

▪ Use data output to a screen in a program.

4 Building using Code

4.1 Logic

▪ Define the programming construct term logic
test. Outline the purpose of a logic test in a
program.

▪ Recognise types of Boolean logic expressions
to generate a true or false value like: =, >, <,
>=, <=, <>, !=, ==, AND, OR, NOT.

▪ Use Boolean logic expressions in a program.

© James Cook Institute Pte Ltd Effective date: July 2023 Page 3 of 3

ICDL Computing

COURSE OUTLINE

4.2 Iteration

▪ Define the programming construct term
loop. Outline the purpose and benefit of
looping in a program.

▪ Recognise types of loops used for iteration:
for, while, repeat.

▪ Use iteration (looping) in a program like: for,
while, repeat.

▪ Understand the term infinite loop.

▪ Understand the term recursion.

4.3 Conditionality

▪ Define the programming construct term
conditional statement. Outline the purpose
of conditional statements in a program.

▪ Use IF…THEN...ELSE conditional statements
in a program.

4.4 Procedures and Functions

▪ Understand the term procedure. Outline the
purpose of a procedure in a program.

▪ Write and name a procedure in a program.

▪ Understand the term function. Outline the
purpose of a function in a program.

▪ Write and name a function in a program.

4.5 Events and Commands

▪ Understand the term event. Outline the
purpose of an event in a program.

▪ Use event handlers like: mouse click,
keyboard input, button click, timer.

▪ Use available generic libraries like: math,
random, time.

5 Test, Debug and Release

5.1 Run, Test and Debug

▪ Understand the benefits of testing and
debugging a program to resolve errors.

▪ Understand types of errors in a program like:
syntax, logic.

▪ Run a program.

▪ Identify and fix a syntax error in a program

like: incorrect spelling, missing punctuation.

▪ Identify and fix a logic error in a program
like: incorrect Boolean expression, incorrect
data type.

5.2 Release

▪ Check your program against the
requirements of the initial description.

▪ Describe the completed program,
communicating purpose and value.

▪ Identify enhancements, improvements to
the program that may meet additional,
related needs.

